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Abstract
Mercury contamination is a widespread phenomenon that impacts ecosystems worldwide. Artisanal Small Scale Gold
Mining (ASGM) activities are responsible for more than a third of atmospheric Hg emission. Due to Hg toxicity and its
broad and elevated prevalence in the environment resulting from ASGM activities in the tropics, its biomonitoring is
essential to better understand the availability of its methylmercury (MeHg) form in the environment. The Minamata
Convention was ratified with the objective to “protect human health and the environment from anthropogenic emissions and
releases of mercury compounds”. Biomagnification of MeHg occurs through the trophic food web, where it biomagnifies
and bioaccumulates in top predators. To monitor environmental MeHg contamination, studies have evaluated the use of
living organisms; however, reptiles are among the least documented vertebrates regarding MeHg exposure. In this review we
evaluate the use of crocodylians for Hg biomonitoring in tropical ecosystems. We found that out of the 28 crocodiles species,
only 10 have been evaluated regarding Hg contamination. The remaining challenges when using this taxon for Hg
biomonitoring are inconsistencies in the applied methodology (e.g., wet versus dry weight, tissues used, quantification
method). However, due to their life history traits, crocodylians are particularly relevant for monitoring MeHg contamination
in regions where ASGM activities occur. In conclusion and given their ecological and socio-economic importance,
crocodylians are at great risk of MeHg contamination and are excellent bioindicators for tropical ecosystems.
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Introduction

Mercury (Hg) is one of the most concerning global con-
taminants (Chen et al. 2018) and its ecological processes in
the Southern Hemisphere are only recently being described
(Chen and Evers 2023). Mercury originates from both natural
and anthropogenic sources, with artisanal and small-scale
gold mining (ASGM) and fossil fuel combustion being the
principal sources of its direct release into ecosystems (Mason
et al. 1994, 2012; Obrist et al. 2018). Under anoxic condi-
tions, inorganic Hg is methylated via sulfate-reducing
microorganisms into methylmercury (MeHg), the most bioa-
vailable and toxic form of Hg (Compeau and Bartha 1985;
Benoit et al. 2003; Podar et al. 2015). MeHg bioaccumulates
within organisms over time and biomagnifies through the

trophic web, where it may reach levels of concern as mea-
sured in different tissues of top predators (Lavoie et al. 2013;
Eagles-Smith et al. 2018). The methylmercury form is
extremely concerning due to its toxicity for human and
wildlife. Deleterious effects attributed to MeHg contamination
encompass (but are not limited to) immunotoxicity, alteration
of neurological capacity and neuro-behavioral function,
impairment of reproduction, and offspring quality (Cordier
et al. 2002; Basu et al. 2005; Scheuhammer et al. 2007; Tan
et al. 2009; Chin et al. 2013; Landler et al. 2017; Maqbool
et al. 2017; Morcillo et al. 2017; Evers 2018).

Due to its toxicity and its capacity to bioaccumulate in
living organisms, the evaluation of Hg, and in particular
MeHg, concentrations in ecosystems is important to under-
stand for regulatory and policy decisions regarding ecosystem
and human health (Evers et al. 2016; Gustin et al. 2016). The
Minamata convention was ratified with the objectives to
“protect human health and the environment from anthro-
pogenic emissions and releases of mercury compounds”
(United Nations Environment Programme (2013)). To assess
its effectiveness, the selection of appropriate bioindicators,
such as those that are of high importance as resources for
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human consumption, and taxa that are at great risk of Hg
exposure, are needed (Evers et al. 2016).

In this regard, studies have evaluated the use of living
organisms to monitor environmental contamination, with
particular attention given to vertebrates (Gómez-Ramírez
et al. 2014; Di Marzio et al. 2018; De Paula Gutiérrez,
Agudelo (2020); Haskins et al. 2021). The use of bioindi-
cators offers several advantages over standard methods
which analyze Hg in soil, sediment, and water. Mercury and
MeHg can concentrate in tissues at varying levels, based on
the type of tissue. Some including blood, brain, and keratin-
based tissues facilitate analytical detection of total Hg as a
high percentage of the Hg is in its methyl form (i.e., > 90%).
Quantification of total Hg in key tissue types (e.g., those
with a high percentage of MeHg) of targeted bioindicator
species provides valuable information on MeHg availability
in an ecosystem. While fish, birds, and mammals have been
extensively used as bioindicators, reptiles have been more
infrequently considered in ecotoxicological studies. Despite
the increasing number of studies on snakes, turtles and
crocodiles showing their capacities to be used as bioindi-
cators species (Burger et al. 2005; Schneider et al. 2011;
Lázaro et al. 2015; Lemaire et al. 2018; Haskins et al.
2021), reptilian model species remain underrepresented.

The tropics are particularly affected by Hg contamina-
tion, where ASGM represents the major source of emissions
(United Nation Environment Programme (2019)). However,
studies in tropical regions generally lag behind Northern
Hemisphere regions (Carravieri et al. 2013; Albert et al.
2019, Diez et al. 2019, Chen and Evers 2023). Tropical
ecosystems contain a high diversity of reptilians which, in
regard to their natural history traits, makes them high
quality candidates for biomonitoring MeHg contamination.
Crocodylians, being top predators inhabiting tropical and
sub-tropical ecosystems, have been used in multiple studies
and prove to be excellent bioindicators of environmental Hg
contamination (Schneider et al. 2015; Nilsen et al. 2017a;
Lemaire et al. 2021a). In this review, we will examine the
main findings, highlight the remaining challenges, and
propose recommendations for using crocodylians to moni-
tor environmental Hg contamination and to contribute to
global biomonitoring efforts that will contribute toward the
evaluation of the effectiveness of the ‘Minamata Conven-
tion on Mercury’.

Methods

A literature review was conducted on January 30th, 2023,
using Scopus, Web of Science, and the Google Scholar
database, with the keywords “Crocodylians”, “Mercury”,
and “Methylmercury”. To ensure the relevance of the stu-
dies, we excluded those that focused solely on mercury

contamination in captive crocodiles and instead focused on
studies on wild crocodylian populations. While this litera-
ture review may not have been exhaustive, it did provide a
robust basis for a global comparison of Hg in various tissues
of wild crocodylians from around the world.

Results and Discussion

Study species and locations

This review demonstrates that although Hg contamination
has been documented in crocodylians for approximately 35
years, literature remains limited. In January 2023 only
39 studies reported Hg contamination in wild crocodylid
populations, with a recent increase of publications in the last
decade. Delany et al. (1988) were the first to publish Hg
contamination in muscle tissue of 32 American alligators
Alligator mississippiensis from various populations in
Florida, USA. Since then, out of the 28 extant crocodylid
species, Hg contamination has only been documented in 10
of them, accounting for 35,7% (Fig. 1). Among these, three
species encompass most of the published studies with A.
mississippiensis being the most studied species with
16 studies (41%), followed by eight studies (20%) on the
Spectacled caiman (Caiman crocodilus), and six studies
(15%) on the Black caiman (Melanosuchus niger) (Fig. 1).
In contrast, the Chinese alligator (Alligator sinensis) and the
Nile crocodile (Crocodylus niloticus) have each been the
subject of one study (Fig. 1).

Crocodylians are widely distributed across tropical and
subtropical ecosystems (Fig. 2). However, most studies on
crocodylian Hg contamination have focused on the Amer-
icas, while Africa and Asia encompass only two studies
where one examined Hg levels in the Chinese alligator (A.
sinensis) in China, and another in the Nile crocodile (C.
niloticus) Hg contamination in Zambia (Almli et al. 2005;
Xu et al. 2006) (Fig. 2).

Among the investigated species, most of them are species
of conservation concern based on the IUCN Red List for
Endangered Species assessment, which stresses the need to
extend Hg evaluation to all crocodylians to serve as large-
scale bioindicators. Additionally, Hg contamination repre-
sents an already documented, deleterious impact in arch-
osaurs (Wolfe et al. 1998; Scheuhammer et al. 2007;
Ackerman et al. 2016). It has been demonstrated that in
alligatorids, Hg contamination, even at low levels, negatively
impacts physiological processes such as osmoregulation,
hepatic function, and endocrine processes (Lemaire et al.
2021b), damages DNA of erythrocytes (Marrugo-Negrete
et al. 2019), alters body condition (Nilsen et al. 2017a), and
disrupts embryonic development (Lemaire et al. 2021c).
Therefore, it is crucial to gain a better understanding of the
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threat that Hg contamination poses to crocodylians. The
available literature emphasizes the urgent need to better
understand its impact on this taxon.

Mercury quantification

Studies show that in the 10 crocodylian species that have
been investigated, Hg concentrations vary according to
body size, habitat type, and geographic location. Such
findings emphasize the need to better understand how dif-
ferent tissue types correlate with confounding

morphometric and environmental factors. Detailed infor-
mation on Hg concentrations measured in wild populations
are summarized in Table 1.

A variety of tissues have been analyzed to investigate Hg
contamination in crocodylians including blood, muscle,
internal organs, and keratinized tissues (e.g., scutes).
However, due to the limited literature available and the
diversity of matrices studied, straightforward comparisons
among studies and species is currently challenging. More-
over, the methodology for sample preparation varies among
studies. A major challenge that hinders robust comparison

Fig. 2 Global distribution range of crocodylian species

Fig. 1 Number of studies on Hg contamination in wild crocodylians which were published by January 30th, 2023
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Table 1 Total mercury concentration measured in different tissues of crocodylians, Mean ± SD/or SE [Min – Max] in µg.g−1, body size
Mean ± SD/or SE [Min – Max] in cm, year of collection and location, published between 1988 and January 2023.

Species Location Year of
collection

n Tissue Body size Hg concentration Authors

American alligator
(Alligator
mississippiensis)

Florida, USA 1985 24 Muscle (ww) 303 cm
[290–380]

0.61
[-]

Delany et al.
1988

Everglades, Florida,
USA

1992–1993 12 Liver (ww) - 39.99 ± 24.05
[8.86–99.48]

Heaton-Jones
et al. 1997

Florida, USA 1992 12 Liver (ww) - 2.53 ± 4.38
[0.14–16.01]

Everglades, Florida,
USA

1992–1993 12 Kidneys (ww) - 25.85 ± 14.63
[5.37–65.53]

Florida, USA 1992 12 Kidneys (ww) - 1.58 ± 2.35
[0.15–9.56]

Everglades, Florida,
USA

1992–1993 12 Spleen (ww) - 3.70 ± 3.28
[1.04–13.10]

Florida, USA 1992 12 Spleen - 0.45 ± 0.48
[0.09–1.31]

Everglades, Florida,
USA

1992–1993 12 Tail muscle (ww) - 2.61 ± 0.91
[1.11–4.28]

Florida, USA 1992 12 Tail muscle (ww) - 0.33 ± 0.28
[0.04–1.00]

Everglades, Florida,
USA

1992–1993 12 Leg muscle (ww) - 2.70 ± 1.41
[0.61–6.05]

Florida, USA 1992 12 Leg muscle (ww) - 0.28 ± 0.19
[0.05–0.60]

Everglades, Florida,
USA

1992–1993 12 Heart (ww) - 2.31 ± 1.18
[1.21–4.62]

Florida, USA 1992 12 Heart (ww) - 0.30 ± 0.22
[0.08–0.85]

Everglades, Florida,
USA

1992–1993 12 Brain (ww) - 1.37 ± 0.61
[0.52–2.50]

Florida, USA 1992 12 Brain (ww) - 0.16 ± 0.09
[0.03–0.31]

Everglades, Florida,
USA

1992–1993 12 Spinal cord (ww) - 1.34 ± 0.57
[0.45–2.55]

Florida, USA 1992 12 Spinal cord (ww) - 0.97 ± 1.64
[0.06–4.98]

Everglades, Florida,
USA

1992–1993 12 Ovaries (ww) - 0.70 ± 0.33
[0.39–1.34]

Florida, USA 1992 12 Ovaries (ww) - 1.30 ± 1.64
[0.03–5.91]

Everglades, Florida,
USA

1992–1993 12 Oviducts (ww) - 1.19 ± 0.29
[0.89–1.59]

Florida, USA 1992 12 Oviducts (ww) - 1.20 ± 1.87
[0.06–5.42]

Everglades, Florida,
USA

1992–1993 12 Testes (ww) - 1.17 ± 0.59
[0.31–2.35]

Florida, USA 1992 12 Testes (ww) - 0.19 ± 0.17
[0.01–0.48]

Everglades, Florida,
USA

1992–1993 12 Tail scales (ww) - 1.03 ± 0.42
[0.40–1.86]

Florida, USA 1992 12 Tail scales (ww) - 0.34 ± 0.33
[0.04–1.10]
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Table 1 (continued)

Species Location Year of
collection

n Tissue Body size Hg concentration Authors

Everglades, Florida,
USA

1992–1993 12 Lungs (ww) - 0.98 ± 0.48
[0.39–1.76]

Florida, USA 1992 12 Lungs (ww) - 0.27 ± 0.20
[0.08–0.63]

Everglades, Florida,
USA

1992–1993 12 Bile (ww) - 0.17 ± 0.12
[<0.01–0.53]

Florida, USA 1992 12 Bile (ww) - 0.23 ± 0.20
[0.03–0.59]

Everglades, Florida,
USA

1994 18 Muscle (dw) - 5.57 ± 0.47 Jagoe et al.
1998

Central Florida, USA 1994 21 Muscle (dw) - 1.85 ± 0.35

Okefenokee, South
Georgia, USA

1994 9 Muscle (dw) - 0.80 ± 0.12

Savannah River,
South Carolina, USA

1994 17 Muscle (dw) - 4.83 ± 0.88

Everglades, Florida,
USA

1994 18 Liver (dw) - 41.03 ± 5.90

Central Florida, USA 1994 21 Liver (dw) - 14.61 ± 3.19

Okefenokee, South
Georgia, USA

1994 9 Liver (dw) - 4.30 ± 0.97

Savannah River,
South Carolina, USA

1994 14 Liver (dw) - 14.90 ± 2.24

Everglades, Florida,
USA

1994 17 Kidneys (dw) - 36.42 ± 53.23

Central Florida, USA 1994 21 Kidneys (dw) - 12.59 ± 2.65

Okefenokee, South
Georgia, USA

1994 9 Kidneys (dw) - 4.82 ± 1.34

Everglades, Florida,
USA

1994 17 Scutes (dw) - 5.83 ± 1.04

Central Florida, USA 1994 20 Scutes (dw) - 0.52 ± 0.09

Okefenokee, South
Georgia, USA

1994 9 Scutes (dw) - 0.29 ± 0.03

Savannah River,
South Carolina, USA

1994 39 Scutes (dw) - 5.14 ± 0.64

Central Florida, USA 1994 21 Claws (dw) - 2.69 ± 0.56

Okefenokee, South
Georgia, USA

1994 9 Claws (dw) - 1.67 ± 0.16

Savannah River,
South Carolina, USA

1994 11 Whole blood (dw) - 2.19 ± 0.38

Okefenokee, South
Georgia, USA

1994 9 Bone (dw) - 0.16 ± 0.02

Okefenokee, South
Georgia, USA

1994 8 Fat (dw) - 0.19 ± 0.06

Okefenokee, South
Georgia, USA

1994 9 Spleen (dw) - 0.63 ± 0.12

Okefenokee, South
Georgia, USA

1994 9 Brain (dw) - 0.46 ± 0.14

WCA, Everglades,
Florida, USA

1994 10 Kidneys (dw) - 35.00 ± 6.02 Yanochko et al.
1997

WCA, Everglades,
Florida, USA

1994 10 Tail scutes (dw) - 6.33 ± 1.04
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Table 1 (continued)

Species Location Year of
collection

n Tissue Body size Hg concentration Authors

WCA, Everglades,
Florida, USA

1994 10 Liver (dw) - 42.15 ± 6.64

WCA, Everglades,
Florida, USA

1994 10 Muscle (dw) - 5.68 ± 0.75

Holiday Park,
Everglades, Florida,
USA

1994 7 Kidneys (dw) - 38.46 ± 9.92

Holiday Park,
Everglades, Florida,
USA

1994 7 Tail scutes (dw) - 5.12 ± 1.01

Holiday Park,
Everglades, Florida,
USA

1994 8 Liver (dw) - 39.75 ± 10.01

Holiday Park,
Everglades, Florida,
USA

1994 8 Muscle (dw) - 5.43 ± 0.53

Par Pound, South
Carolina, USA

1994 39 Tail scutes (dw) - 4.58 ± 0.63

Par Pound, South
Carolina, USA

1994 17 Liver (dw) - 17.73 ± 2.56

Par Pound, South
Carolina, USA

1994 21 Muscle (dw) - 4.08 ± 0.46

South Louisiana,
USA

1998 42 Muscle (ww) [124–368] 0.131
[0.047–0.386]

Elsey et al.
1999

Everglades, Florida,
USA

1999 28 Liver (ww) 77.4 ± 9.7 SVL
[58.5–93.5]

4.89 ± 3.99
[0.6–17]

Rumbold et al.
2002

Everglades, Florida,
USA

1999 28 Tail muscle (ww) 77.4 ± 9.7 SVL
[58.5–93.5]

0.64 ± 0.04
[0.1–1.8]

Caddo Lake, Texas /
Louisiana, USA

2007 2 Muscle (dw) 149 ± 55.2 0.795 ± 0.010 Chumchal et al.
2011

Caddo Lake, Texas /
Louisiana, USA

2007 2 Liver (dw) 149 ± 55.2 2.263 ± 0.289

South Carolina, USA 2008 33 Liver (ww) 234.4 ± 9.2
[152–336]

5.68 ± 1.4 Campbell et al.
2010

Florida, USA 2009–2010 62 Liver (dw) [66.5–370] [0.0522–23.9] Horai et al.
2014

Florida, USA 2012 37 Whole blood (ww) [43.9–153.5]
SVL

0.1937
[0.0567–1.380]

Nilsen et al.
2017b

Florida, USA 2012 37 Muscle (ww) [43.9–153.5]
SVL

0.2431
[0.0453–1.183]

Florida, USA 2012 37 Liver (ww) [43.9–153.5]
SVL

3.5941
[0.5668–14.293]

Florida, USA 2012 30 Scutes (ww) [43.9–153.5]
SVL

0.3185
[0.0622–1.9659]

Merritt Island,
Florida, USA

2007–2014 174 Whole blood (ww) [87–187.2] SVL 0.152
[0.0358–1.0664]

Nilsen et al.
2017a

Yawkey, South
Carolina, USA

2011–2014 15 Whole blood (ww) 136 ± 21 SVL
[112–183]

0.150 ± 0.049
[0.048–0.238]

Nilsen et al.
2019

Bear Island, South
Carolina, USA

2011–2014 14 Whole blood (ww) 119 ± 22 SVL
[80–165]

0.118 ± 0.058
[0.044–0.234]

Kissimmee, Florida,
USA

2011–2014 12 Whole blood (ww) 129 ± 33 SVL
[90–178]

0.393 ± 0.204
[0.185–0.796]
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Table 1 (continued)

Species Location Year of
collection

n Tissue Body size Hg concentration Authors

Lochloosa, Florida,
USA

2011–2014 10 Whole blood (ww) 126 ± 31 SVL
[94–180]

0.146 ± 0.067
[0.039–0.251]

St. Johns, Florida,
USA

2011–2014 11 Whole blood (ww) 136 ± 20 SVL
[96–168]

0.153 ± 0.049
[0.079–0.234]

Trafford, Florida,
USA

2011–2014 12 Whole blood (ww) 121 ± 25 SVL
[90–154]

0.194 ± 0.073
[0.067–0.359]

Everglades, Florida,
USA

2011–2014 14 Whole blood (ww) 110 ± 23 SVL
[92–157]

1.364 ± 0.673
[0.438–2.765]

Cape Fear River
North Carolina, USA

2021 13 Blood (ww) 94.7 ± 37.2 SVL
[50.4–190.8]

0.0792 ± 0.0796
[0.0216–0.3355]

Belcher et al.
2022

Lake Waccamaw,
North Carolina, USA

2021 31 Blood (ww) 95.4 ± 27.5 SVL
[57.6–148.9]

0.5111 ± 0.2461
[0.1522–0.9459]

St. Johns River,
Florida, USA

2021 24 Blood (ww) 119.1 ± 31.9
SVL
[50.9–163.1]

0.1483 ± 0.0489
[0.0544–0.2443]

Florida, USA - 30 Fat (ww) - 0.0482 ± 0.0137 Burger et al.
2000

Florida, USA - 31 Liver (ww) - 0.403 ± 0.0801

Florida, USA - 30 Abdominal
muscle (ww)

- 0.0756 ± 0.016

Florida, USA - 29 Skin (ww) - 0.0558 ± 0.0129

Florida, USA - 29 Tail muscle (ww) - 0.0625 ± 0.0165

Florida, USA - 22 Tail tip (ww) - 0.0514 ± 0.00869

Savannah River,
South Carolina, USA

2020–2021 31 Tail muscle (ww) - 1.31 ± 0.18
[0.077 -4.33]

Kojima et al.
2023

Savannah River,
South Carolina, USA

2020–2021 53 Whole blood (ww) - 0.938 ± 0.10
[0.076–3.41]

Rockefeller Wildlife
Refuge, Louisiana,
USA

2002 26 Brain (dw) 73.13 ± 4.43
SVL

0.270 ± 0.043
[0.072–1.143]

Moore et al.
2022

Rockefeller Wildlife
Refuge, Louisiana,
USA

2002 27 Claws (dw) 73.13 ± 4.43
SVL

0.759 ± 0.130
[0.055–3.789]

Rockefeller Wildlife
Refuge, Louisiana,
USA

2002 27 Front leg muscle
(dw)

73.13 ± 4.43
SVL

0.388 ± 0.067
[0.113–1.827]

Rockefeller Wildlife
Refuge, Louisiana,
USA

2002 27 Liver (dw) 73.13 ± 4.43
SVL

3.120 ± 0.760
[0.291–16.87]

Rockefeller Wildlife
Refuge, Louisiana,
USA

2002 27 Gonad (dw) 73.13 ± 4.43
SVL

0.247 ± 0.056
[0.030–1.525]

Rockefeller Wildlife
Refuge, Louisiana,
USA

2002 27 Heart (dw) 73.13 ± 4.43
SVL

0.465 ± 0.088
[0.133–2.458]

Rockefeller Wildlife
Refuge, Louisiana,
USA

2002 27 Jaw muscle (dw) 73.13 ± 4.43
SVL

0.588 ± 0.109
[0.169–3.030]

Rockefeller Wildlife
Refuge, Louisiana,
USA

2002 27 Kidney (dw) 73.13 ± 4.43
SVL

3.183 ± 0.689
[0.488–16.101]

2002 27
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Table 1 (continued)

Species Location Year of
collection

n Tissue Body size Hg concentration Authors

Rockefeller Wildlife
Refuge, Louisiana,
USA

Rear leg muscle
(dw)

73.13 ± 4.43
SVL

0.425 ± 0.080
[0.128–2.204]

Rockefeller Wildlife
Refuge, Louisiana,
USA

2002 27 Dermal tail scutes
(dw)

73.13 ± 4.43
SVL

0.523 ± 0.210
[0.032–5.789]

Rockefeller Wildlife
Refuge, Louisiana,
USA

2002 27 Tail muscle (dw) 73.13 ± 4.43
SVL

0.478 ± 0.090
[0.154–2.455]

Rockefeller Wildlife
Refuge, Louisiana,
USA

2002 27 Blood (ww) 73.13 ± 4.43
SVL

0.122 ± 0.022
[0.029–0.532]

Chinese Alligator
(Alligator sinensis)

Changwing Nature
Reserve, China

2004 2 Heart (dw) - 0.347
[0.343–0.350]

Xu et al. 2006

Changwing Nature
Reserve, China

2004 2 Lung (dw) - 0.327
[0.248–0.405]

Changwing Nature
Reserve, China

2004 2 Liver (dw) - 0.559
[0.492–0.626]

Changwing Nature
Reserve, China

2004 2 Stomach (dw) - 0.291
[0.232–0.349]

Changwing Nature
Reserve, China

2004 2 Kidneys (dw) - 0.902
[0.869–0.935]

Changwing Nature
Reserve, China

2004 2 Intestine (dw) - 0.399
[0.389–0.409]

Changwing Nature
Reserve, China

2004 2 Tracheas (dw) - 0.120
[0.092–0.147]

Changwing Nature
Reserve, China

2004 2 Pancreas (dw) - 0.061
[0.042–0.080]

Changwing Nature
Reserve, China

2004 2 Reproductive
organs (dw)

- 0.059
[0.032–0.085]

Changwing Nature
Reserve, China

2004 2 Muscle (dw) - 0.193
[0.105–0.281]

Spectacled Caiman
(Caiman crocodilus)

Rio Purus, Brazil 2008 10 Muscle (ww) 75.4 ± 12 SVL
[62–98]

0.2912 ± 0.2128
[0.0632–0.6806]

Schneider et al.
2012

Rio Purus, Brazil 2008 7 Muscle (dw) 75 ± 10 SVL
[66–94]

0.234 ± 0.144
[0.132–0.447]

Schneider et al.
2015

Rio Purus, Brazil 2008 7 Epidermal scale
(dw)

75 ± 10 SVL
[66–94]

3.350 ± 2.143
[0.500–7.150]

Rio Purus, Brazil 2008 7 Bone (dw) 75 ± 10 SVL
[66–94]

0.153 ± 0.121
[0.040–0.370]

La Mojana, Colombia 2016 45 Blood (ww) [50–80] TL 0.039 ± 0.030 Marrugo-
Negrete et al.
2019

La Mojana, Colombia 2016 45 Claws (ww) [50–80] TL 0.647 ± 0.547

La Mojana, Colombia 2016 45 Scutes (ww) [50–80] TL 0.366 ± 0.205

La Mojana, Colombia 2016 20 Blood (ww) [50–80] TL 0.008 ± 0.003

La Mojana, Colombia 2016 20 Claws (ww) [50–80] TL 0.131 ± 0.038

La Mojana, Colombia 2016 20 Scutes (ww) [50–80] TL 0.032 ± 0.006

French Guiana 2016–2020 48 Claws (dw) 66.60 ± 24.11 TL
[31.0–176.0]

2.692 ± 1.608
[0.321–8.807]

Lemaire et al.
2021d

French Guiana 2016–2020 47 Scutes (dw) 66.60 ± 24.11 TL
[31.0–176.0]

2.638 ± 1.497
[0.307–7.407]
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Table 1 (continued)

Species Location Year of
collection

n Tissue Body size Hg concentration Authors

French Guiana 2016–2020 26 Red Blood Cells
(dw)

66.60 ± 24.11 TL
[31.0–176.0]

0.963 ± 0.612
[0.145–2.244]

French Guiana 2016–2020 40 Whole blood (dw) 66.60 ± 24.11 TL
[31.0–176.0]

0.605 ± 0.380
[0.089–1.532]

French Guiana 2019–2020 21 Whole blood (dw) 35.9 ± 7.7 SVL
[20.2–48.5]

0.676 ± 0.414
[0.168–1.532]

Lemaire et al.
2021b

Rio Purus, Brazil - 8 Muscle (ww) 90 ± 14
[62–105]

0.362 ± 0.231
[0.114–0.834]

Eggins et al.
2015

15 Liver (ww) 90 ± 14
[62–105]

1.701 ± 1.249
[0.035–5.305]

11 Blood (ww) 90 ± 14
[62–105]

0.060 ± 0.063
[0.020–0.240]

8 Keratin (ww) 90 ± 14
[62–105]

3.527 ± 3.095
[0.576–10.172]

French Guiana - 34 Whole blood (dw) 72.3 ± 24.7 TL
[40.6–176.0]

0.61 ± 0.39
[0.09–1.53]

Lemaire et al.
2022

Yacaré
(Caiman yacare)

La Paz, Bolivia 2007–2008 64 Muscle (ww) < 180 TL 0.21 ± 0.22 Rivera et al.
2016

Colorado-Maja lakes,
Bolivia

2017 7 Fat (ww) [177–220] 0.025 ± 0.03 Salazar-Pammo
et al. 2021

Colorado-Maja lakes,
Bolivia

2017 7 Muscle (ww) [177–220] 0.15 ± 0.06

Colorado-Maja lakes,
Bolivia

2017 7 Kidneys (ww) [177–220] 0.57 ± 0.30

Colorado-Maja lakes,
Bolivia

2017 7 Liver (ww) [177–220] 1.81 ± 0.80

Paraguay River,
Pantanal, Brazil

- 17 Caudal scutes
(ww)

- 0.0957 ± 0.0922 Lázaro et al.
2015

Bentos Gomes River,
Pantanal, Brazil

- 22 Caudal scutes
(ww)

- 0.2639 ± 0.1587

Paraguay River,
Pantanal, Brazil

- 17 Claws (ww) - 0.8455 ± 0.6227

Bentos Gomes River,
Pantanal, Brazil

- 22 Claws (ww) - 1.9447 ± 0.7037

Pantanal, Brazil - 79 Tail muscle (ww) - [0.02–0.36] Vieira et al.
2011

American Crocodile
(Crocodylus acutus)

Rio Grande Tárcoles,
Costa Rica

2003 6 Scutes (ww) 155.7 ± 5.5 SVL
[134–172]

0.0935 ± 0.027 Rainwater et al.
2007

Belize 2019–2019 30 Scutes mix (dw) - [0.002–7.33] Thirion et al.
2022

Morelet’s Crocodile
(Crocodylus
moreletii)

Gold Button Lagoon,
Belize

1997–2001 9 Scutes (ww) 89.8 ± 6.7 SVL
[65.0–129.5]

0.0987 ± 0.0216 Rainwater et al.
2007

New River
Watershed, Belize

1997–2001 10 Scutes (ww) 104.4 ± 9.6 SVL
[59.5–156.7]

0.0727 ± 0.0204

Campeche State,
Mexico

2012 92 Scutes (dw) 145.6 ± 37.5
SVL
[75–288]

5.4 ± 8.3 Trillanes et al.
2014

Rio Hondo, Mexico 2012–2013 20 Scutes (ww) [32–190.5] 0.3741 ± 0.4294 Buenfil-Rojas
et al. 2015

Mexico 2016–2018 5 Claws (ww) - 1.31 ± 0.32 Buenfil-Rojas
et al. 2020
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Table 1 (continued)

Species Location Year of
collection

n Tissue Body size Hg concentration Authors

Mexico 2016–2018 50 Scutes (ww) - 0.27 ± 0.28

Mexico 2016–2018 47 Erythrocytes (ww) - 0.16 ± 0.20

Belize 2016–2019 63 Scutes mix (dw) - [0.002–1.73] Thirion et al.
2022

Nile Crocodile
(Crocodylus
niloticus)

Kafue River, Zambia 1998 4 Liver (ww) [2.7–3.4] 3.5
[0.97–20]

Almli et al.
2005

Luangwa, Zambia 1998 5 Liver (ww) [2.0–4.0] 3.7
[2.2–16]

Kafue River, Zambia 1998 4 Kidney (ww) [2.7–3.4] 0.76
[0.60–15]

Luangwa, Zambia 1998 5 Kidney (ww) [2.0– 4.0] 2.7
[1.3–8.7]

Black caiman
(Melanosuchus
niger)

Rio Purus, Brazil 2008 13 Muscle (dw) 106 ± 28 SVL
[87–191]

0.177 ± 0.102
[0.056–0.371]

Schneider et al.
2015

Rio Purus, Brazil 2008 13 Epidermal scale
(dw)

106 ± 28 SVL
[87–191]

3.846 ± 2.815
[1.100–10.400]

Rio Purus, Brazil 2008 11 Bone (dw) 106 ± 28 SVL
[87–191]

0.080 ± 0.093
[0.020–0.380]

Rio Purus, Brazil 2008 11 Muscle (ww) 107.5 ± 31.44
SVL
[75.3–190.9]

0.1939 ± 0.0962
[0.0694–0.4066]

Schneider et al.
2012

Kaw-Roura Nature
Reserve, French
Guiana

2013–2015 72 Whole blood (dw) 143.2 ± 61.3 TL
[46.0–326.0]

1.284 ± 0.672
[0.30–3.41]

Lemaire et al.
2021a

Mamirauá Reservoir,
Brazil

- 60 Muscle (ww) [107–309] 0.407 ± 0.114
[0.251–0.784]

Correira et al.
(2014)

Rio Purus, Brazil - 11 Muscle (ww) 102 ± 27
[75–191]

0.176 ± 0.097
[0.057–0.371]

Eggins et al.
2015

Rio Purus, Brazil - 11 Liver (ww) 102 ± 27
[75–191]

2.362 ± 2.257
[0.670–7.520]

Rio Purus, Brazil - 12 Blood (ww) 102 ± 27
[75–191]

0.048 ± 0.032
[0.016–0.134]

Rio Purus, Brazil - 13 Keratin (ww) 102 ± 27
[75–191]

2.092 ± 1.052
[0.209–4.029]

French Guiana - 25 Whole blood (dw) 176.4 ± 72.2 TL
[71.0–326]

1.56 ± 0.65
[0.54–2.89]

Lemaire et al.
2022

Dwarf Caiman
(Paleosuchus
palpebrosus)

French Guiana 2016–2020 13 Claws (dw) 79.42 ± 33.22 TL
[34.2–150]

8.351 ± 4.965
[2.028–20.042]

Lemaire et al.
2021d

French Guiana 2016–2020 13 Scutes (dw) 79.42 ± 33.22 TL
[34.2–150]

7.647 ± 4.742
[0.789–15.628]

French Guiana 2016–2020 6 Red Blood cells
(dw)

79.42 ± 33.22 TL
[34.2–150]

2.364 ± 1.884
[0.447–5.775]

French Guiana 2016–2020 7 Whole blood (dw) 79.42 ± 33.22 TL
[34.2–150]

1.376 ± 0.986
[0.540–3.415]

French Guiana - 5 Whole blood (dw) 75.3 ± 44.6 TL
[35.5–150]

1.50 ± 1.18
[0.147–7.509]

Lemaire et al.
2022

Smooth-fronted
caiman
(Paleosuchus
trigonatus)

French Guiana 2016–2020 50 Claws (dw) 62.11 ± 36.42 TL
[22.8–143]

2.420 ± 1.905
[0.147–7.509]

Lemaire et al.
2021d

French Guiana 2016–2020 48 Scutes (dw) 62.11 ± 36.42 TL
[22.8–143]

3.332 ± 3.066
[0.087–9.859]

J. Lemaire



across species, tissues, and locations is the methodology of
Hg quantification, which can be reported in wet or dry
tissue weight. Several studies have demonstrated that
moisture content in crocodylian tissues varies greatly
among species and locations, and can affect the interpreta-
tion of findings. Therefore, dry weight analysis appears to
be essential for inter- and intraspecific comparison
(Yanochko et al. 1997; Jagoe et al. 1998; Lemaire et al.
2021d).

Crocodylians are often a source of bushmeat for local
communities and the consumption of their meat has been
found to pose a health risk due to high Hg levels. Studies
have focused on muscle tissue of crocodylians, which
showed Hg concentrations as high as 4.28 µg.g−1 (ww) in
muscles of A. mississippiensis (Heaton-Jones et al. 1997),
exceeding the WHO recommendation limit of 0.5 µg.g−1 for
safe consumption (WHO, World Health Organization
(2011)).

Monitoring programs are needed to assess the risks
associated with crocodylian meat consumption (Elsey et al.
1999; Vieira et al. 2011; Kojima et al. 2023), especially
since muscle tissue contains over 70% of the methyl form
(Vieira et al. 2011). However, the risk of Hg poisoning is
strongly linked to intake frequency (Chételat et al. 2020).
The liver plays a crucial role in detoxifying Hg and as a
result, MeHg represents less than 40% of total Hg (THg) in
liver tissues (Vieira et al. 2011). Analysis of total Hg is a
cost-effective way of assessing MeHg levels in muscle tis-
sue. While the MeHg concentration ratio in blood and
keratinized tissues has been studied in other species, it has
not been measured in crocodylians. Nevertheless, blood and
keratinized tissues can serve as a proxy for concentrations
of the methyl form with over 80% of total Hg found as
MeHg (Oliveira Ribeiro et al. 1999; Renedo et al. 2017;
Chételat et al. 2020). This approach can be useful in terms
of analytical efficiency (time and costs).

Crocodylian tissues Hg concentrations are not con-
founded by sex of the individual (e.g., Elsey et al. 1999;
Vieira et al. 2011; Lemaire et al. 2021a). While maternal

transfer has been shown in some crocodylian species such
as A. mississippiensis (Nilsen et al. 2020) and P. trigonatus
(Lemaire et al. 2021c), this phenomenon does not seem to
affect Hg concentration in the blood of the females.
Therefore, the entire population can be used for monitoring,
regardless of sex, which is often difficult to determine in the
field. This further facilitates harmonized comparison
between studies.

To minimize impact on individuals, less-invasive sam-
pling methods are preferred. Blood, and keratin tissues such
as claws and scutes, are obtained via non-lethal sampling
methods and provide information on the availability of
MeHg in the environment. These tissues are known to be
good predictors of Hg concentrations for internal tissues,
such as liver and muscle (Jagoe et al. 1998; Burger et al.
2000). This is particularly important given the conservation
status of most crocodylid species.

Clipping tail scutes is a commonly used sampling
methods for crocodiles, as it further serves for individual
identification and can be used for stable isotopes, DNA, and
contaminant analysis (De Thoisy et al. 2006; Rainwater
et al. 2007; Machkour-M’Rabet et al. 2009; Radloff et al.
2012; Trillanes et al. 2014; Pacheco-Sierra et al. 2016;
Santos et al. 2018). Scutes and claws are keratin-rich
excretion tissues that display high Hg concentrations due to
strong affinity of Hg to sulfhydryl-groups contained in
keratin (Alibardi 2003; Alibardi and Toni 2007). Mercury
levels in keratinized tissues are considered to reflect long
term contamination of the individual (Lázaro et al. 2015;
Schneider et al. 2015; Marrugo-Negrete et al. 2019;
Lemaire et al. 2021d). However, throughout the multiple
studies which have been using scutes, only the studies from
Schneider et al. (2015) and Lemaire et al. (2021d) give
detailed information on the actual part of the scute that had
been used for analysis. The importance of specification of
the analyzed tissues was demonstrated in the study from
Lemaire et al. (2021d): The authors compared Hg con-
centration when the total scute was analyzed to only the
keratin layer of the scute, and show that bone inclusion lead

Table 1 (continued)

Species Location Year of
collection

n Tissue Body size Hg concentration Authors

French Guiana 2016–2020 11 Red Blood Cells
(dw)

62.11 ± 36.42 TL
[22.8–143]

0.447 ± 0.270
[0.049–0.774]

French Guiana 2016–2020 24 Whole blood (dw) 62.11 ± 36.42 TL
[22.8–143]

0.300 ± 0.178
[0.032–0.738]

French Guiana 2017–2020 38 Claws (dw) [23.0–26.5] TL [0.171–0.663] Lemaire et al.
2021cFrench Guiana 2017–2020 38 Scutes (dw) [23.0–26.5] TL [0.092–0.251]

French Guiana - 20 Whole blood (dw) 82.8 ± 32.7 TL
[27–143]

0.35 ± 0.15
[0.10–0.70]

Lemaire et al.
2022

ww wet weight, dw dry weight.
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to an underrepresentation of Hg quantification (in the eva-
luation of the actual environmental contamination status).
This highlights the importance of using only the keratin
layer for analysis as proxy of long-term contamination.

In contrast, blood is another valuable tissue for bio-
monitoring studies, as it is involved in MeHg transporta-
tion to organs and reflects recent MeHg uptake directly
related to the individual’s diet (Lemaire et al. 2022;
Manrico et al. 2017). In this order, ontogenetic dietary
shift between juveniles and adults greatly influences
measured total Hg concentration in blood, leading to a
high variability in the relation between size and MeHg
concentration. This ontogenetic shift explains why the
relationship between blood Hg and body size is variable
and was found in some studies (Eggins et al. 2015;
Buenfil-Rojas et al. 2018; Lemaire et al. 2021a), but not in
others (Yanochko et al. 1997; Eggins et al. 2015; Lawson
et al. 2020). Therefore, when comparing Hg concentra-
tions between different geographic areas, it is important to
consider size of individuals. This emphasizes that kerati-
nized tissues and blood are complementary in Hg bio-
monitoring studies as they reflect long-term and short-term
contamination, respectively.

Pattern of Hg concentrations

Among the available literature, scutes have been the most
studied tissue in regard to species diversity. Eight croco-
dylian species from North and South America have been
investigated, with mean Hg concentrations in scutes ranging
from 0.188 to 7.647 µg.g−1 dw (Table 2).

P. palpebrosus showed the highest Hg concentrations in
scutes, followed by A. mississippiensis, M. niger and P. tri-
gonatus (all > 3.3 µg.g−1 dw, Table 2). In contrast, C. acutus
showed the lowest Hg concentration with 0.188 µg.g−1 dw.

The difference in Hg concentrations between species can
be explained by their trophic ecology. As for other taxa, one
of the sources of variation in Hg concentration in croco-
dylians is related to their trophic ecology (e.g., trophic
position and foraging habitat, Lemaire et al. 2022). Addi-
tionally, geographic location plays a predominant role in Hg
concentrations, depending on geological background and
pollutant activities (Siqueira et al. 2018).

Among the four most contaminated crocodylian species,
three are from the Amazon, a region known to present high
geological Hg background, often enhanced by mining
activities (United Nation Environment Programme (2019);
Crespo-Lopez et al. 2023), factors known to increase Hg in
trophic food webs. Crocodylian species from the Guiana
Shield have the highest reported mean Hg concentrations so
far, which is not surprising regarding the Hg-rich geological
background and gold mining activities in the region (Rahm
et al. 2015; Kroonenberg et al. 2022).Ta
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A. mississippiensis is the species with the second highest
Hg concentration, which can be explained by the habitats
where data were collected: A. mississippiensis lives in North
America and is often encountered in close vicinity of
anthropized areas (Beal and Rosenblatt 2020). Further, the
species is found in the Florida Everglades, an ecosystem
known to have high Hg concentrations (Janssen et al. 2022).

Some crocodylian species seem more likely to be con-
taminated with Hg depending on their geographical range
and their trophic ecology, in this order, it would be of great
importance to assess Hg geological background, trophic
position and foraging ecology when monitoring Hg con-
tamination to better understand the pattern of Hg con-
centrations in crocodylians.

Crocodylians to monitor mercury
contamination in the tropics

Due to their unique life history traits, crocodylians (alliga-
tors, caimans, true crocodiles, and gharials) are excellent
indicators of MeHg contamination. They are high trophic-
level predators living in aquatic ecosystems (Somaweera
et al. 2020) which favors MeHg contamination due to
biomagnification; they are long-lived animals (up to several
decades) with a low metabolic, and a high tissue conversion
rate (Garnett 1986; Webb et al. 1991) which favors MeHg
bioaccumulation; they are territorial and sedentary (e.g.,
Hutton 1989; Fujisaki et al. 2014; Caut et al. 2019), which
allows for precise spatial biomonitoring of MeHg con-
tamination. Due to their large body size and robustness,
sample collection is relatively straightforward. Additionally,
the distribution of crocodylians across tropical and sub-
tropical ecosystems is vast (Martin 2008), making them
excellent candidates for large-scale monitoring. Overall,
crocodiles represent a valuable tool in assessing the extent
of MeHg availability in aquatic ecosystems.

Artisanal small-scale gold mining (ASGM) activities are
among the main sources of Hg contributions to ecosystems,
particularly in tropical and subtropical regions such as South
America, Africa, and South-East Asia. The estimated annual
release of Hg from ASGM activities exceeds 2000 tons each
year (United Nation Environment Programme (2019)), with
ASGM being responsible for up to 80% of local Hg emis-
sions in Sub-Saharan Africa and 70% in South America
(United Nation Environment Programme (2019)). Together,
these two regions represent 70% of total Hg emission related
to ASGM worldwide (United Nation Environment Pro-
gramme (2019)). Unfortunately, there is a lack of biotic Hg
data for many countries where ASGM activities are widely
used (Kom et al. 1998; Peplow and Augustine 2014;
Markham and Sangermano 2018, United Nation Environ-
ment Programme (2019)). Given the geographic range of

ASGM activities, finding a suitable bioindicator to monitor
Hg contamination is challenging. Crocodylians are an ideal
candidate for several reasons, including a manageable num-
ber of species, their life history traits, and the potential to
represent a broad contamination gradient.

Monitoring Hg contamination in crocodylians can help
to assess the effectiveness of global biomonitoring. While
reptiles are not listed as focal taxa within the Minamata
Convention (Evers et al. 2016), there is still tremendous
value in understanding MeHg availability to crocodylians
and the potential adverse impacts on their behavior, phy-
siology and reproductive success. Sample collection from
crocodylians is (relatively) straightforward as there are
sufficient tissues (e.g., blood and scutes) that can be sam-
pled non-lethally to monitor Hg contamination over dif-
ferent time scales (see 'Methods'), including retrospective
Hg analysis via museum specimens. Using crocodylians as
bioindicators can help us to understand the extent and
impact of Hg contamination from ASGM activities, and to
work towards understanding its harmful effects on both
wildlife and human populations, even more in areas where
geological Hg is naturally high (e.g., Guyana Shield).

Recommendations

The present review highlights several biases that limit
comparisons among studies, species, and tissues in the
assessment of Hg contamination in crocodylians. One of
these biases is the quantification of Hg concentrations in
wet- or dry weight, which can be tissue-specific and the
variability among individuals and location as shown in A.
mississippiensis (Yanochko et al. 1997; Jagoe et al. 1998),
P. palpebrosus, C. crocodilus, and P. trigonatus (Lemaire
et al. 2021d). To enable rigorous comparison of Hg con-
tamination among species and locations, the use of dry
samples should be emphasized.

The use of keratinized tissues such as scutes provides
valuable information on long-term Hg contamination of an
individual via a minimally invasive method. While this
tissue has been used in many studies, the actual part of the
scute used during analytical procedure is not yet standar-
dized. Scutes are used as keratinized tissues to study the
long-term accumulation of Hg. However, as first high-
lighted by Schneider et al. (2015) and then demonstrated by
Lemaire et al. (2021d), using full scutes results in variation
of measured Hg concentrations due to the integration of
unknown quantities of bone and connective tissues. To
avoid this bias, only the keratin layer should be used when
scutes are used to quantify Hg contamination.

This review also reveals that in 18 crocodylid species,
Hg contamination has never been assessed. Filling this
knowledge gap should be a priority, particularly for species
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which are strongly impacted by human activities (e.g.,
mining, oil extraction, and urbanization), which can
increase the bioavailability of MeHg in the environment.
Furthermore, ecotoxicological studies on potential physio-
logical, behavioral, and reproductive effects of MeHg
contamination are needed.

In conclusion, and given their ecological and socio-
economic importance, crocodylians are at great risk of Hg
contamination, and are excellent bioindicators to global
biomonitoring interest for MeHg by the Minamata Con-
vention on Mercury. To ensure robust and standardized
assessments of Hg contamination, future studies should
consider the methodological points in this review.
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